C.U.SHAH UNIVERSITY Winter Examination-2019

Subject Name: Control System Engineering

Subject Code: 4TE04CSE1		Branch: B.Tech (EC)		
Semester : 4	Date : 17/09/2019	Time : 02:30 To 05:30	Marks : 70	
Instructions:				

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Define the following terms:

- a) Source node
- **b**) Sink node
- c) Chain node
- **d**) Forward path
- e) Feedback path
- f) Self-loop
- g) Non-touching loops
- **h**) Gain margin
- i) Phase margin
- j) Bandwidth
- **k**) Resonant frequency
- l) Resonant peak
- **m**) Gain cross over frequency
- n) Proportional control

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(14)

(14)

(14)

(14)

- (a) What is control system? Mention the difference between the open loop and close loop control system.
- (b) Explain transfer function and write its advantages and dis advantages

Attempt all questions

0-3

- (a) State and explain Nyquist stability criteria
- (b) Explain Type 0, Type 1 and Type 2 control system. Derive equation for the steady state error of the Type 2 control system for step, ramp and parabolic input.

Q-4 Attempt all questions

- (a) Draw a schematic diagram of armature controlled DC motor and its block diagram with closed loop. Derive the transfer function for armature controlled DC motor.
- (b) The close loop transfer function of a given second order system is $100/(S^2)$

		+10S+100).Determine damping ratio, natural frequency, delay time, rise time, settling time and peak over shoot.	
Q-5		Attempt all questions	(14)
-	(a)	$S^{6}+4S^{5}+3S^{4}-16S^{2}-64S-48=0$ Check the stability of the given characteristic equation using Routh method.	
	(b)	Derive an expression for the time response of a second-order controlsystem subjected to a unit step input.	
Q-6		Attempt all questions	(14)
	(a)	Explain the procedure to design Lag Compensator using Root Locus.	
	(b)	Write short notes on correlation between the time and frequency response?	
Q-7		Attempt all questions	(14)
	(a)	Explain bode plot of Lag-Lead compensator.	
	(b)	Write a brief note on polar plots with a sketch of a simple example.	
Q-8		Attempt all questions	(14)
	(a)	Write short note on PID controller.	
	(b)	Explain any three properties of Laplace transform.	

